424 research outputs found

    Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe façade-based heat pump water heating system

    Get PDF
    The aim of the paper was to present a dedicated theoretical investigation into the thermal performance of a novel solar loop-heat-pipe façade based heat pump water heating system. This involved thermo-fluid analyses, computer numerical model development, the model running up, modelling result analyses and conclusion. An energy balance network was established on each part and the whole range of the system to address the associated energy conversion and transfer processes. On basis of this, a computer numerical model was developed and run up to predict the thermal performance of such a system at different system configurations, layouts and operational conditions. It was suggested that the loop heat pipes could be filled with either water, R134a, R22 or R600a; of which R600a is the favourite working fluid owing to its relatively larger heat transfer capacity and positive pressure in operation. Variations in the system configuration, i.e., glazing covers, heat exchangers, would lead to identifiable differences in the thermal performance of the system, represented by the thermal efficiency and COP. Furthermore, impact of the external operational parameters, i.e., solar radiation and ambient air temperature, to the system's thermal performance was also investigated. The research was based on an innovative loop-heat-pipe façade and came up with useful results reflecting the thermal performance of the combined system between the façade and heat pump. This would help promote development and market penetration of such an innovative solar heating technology, and thus contribute to achieving the global targets in energy saving and carbon emission reduction

    Parallel experimental study of a novel super-thin thermal absorber based photovoltaic/thermal (PV/T) system against conventional photovoltaic (PV) system

    Get PDF
    Photovoltaic (PV) semiconductor degrades in performance due to temperature rise. A super thin-conductive thermal absorber is therefore developed to regulate the PV working temperature by retrofitting the existing PV panel into the photovoltaic/thermal (PV/T) panel. This article presented the parallel comparative investigation of the two different systems through both laboratory and field experiments. The laboratory evaluation consisted of one PV panel and one PV/T panel respectively while the overall field system involved 15 stand-alone PV panels and 15 retrofitted PV/T panels. The laboratory testing results demonstrated the PV/T panel could achieve the electrical efficiency of about 16.8% (relatively 5% improvement comparing with the stand-alone PV panel), and yield an extra amount of heat with thermal efficiency of nearly 65%. The field testing results indicated that the hybrid PV/T panel could enhance the electrical return of PV panels by nearly 3.5%, and increase the overall energy output by nearly 324.3%. Further opportunities and challenges were then discussed from aspects of different PV/T stakeholders to accelerate the development. It is expected that such technology could become a significant solution to yield more electricity, offset heating load freely and reduce carbon footprint in contemporary energy environment

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Lattice strain effects on the optical properties of MoS2 nanosheets.

    Get PDF
    "Strain engineering" in functional materials has been widely explored to tailor the physical properties of electronic materials and improve their electrical and/or optical properties. Here, we exploit both in plane and out of plane uniaxial tensile strains in MoS2 to modulate its band gap and engineer its optical properties. We utilize X-ray diffraction and cross-sectional transmission electron microscopy to quantify the strains in the as-synthesized MoS2 nanosheets and apply measured shifts of Raman-active modes to confirm lattice strain modification of both the out-of-plane and in-plane phonon vibrations of the MoS2 nanosheets. The induced band gap evolution due to in-plane and out-of-plane tensile stresses is validated by photoluminescence (PL) measurements, promising a potential route for unprecedented manipulation of the physical, electrical and optical properties of MoS2

    Case study of smart meter and in-home display for residential behavior change in Shanghai, China

    Get PDF
    Smart meters and in-home displays (IHD) have been recently adopted to help give residential consumers more control over energy consumption, and to help meet environmental and security of supply objectives. The paper aims to identify the effectiveness of smart meters and real-time IHDs in reducing Shanghai household energy consumption through a pilot investigation. The research results demonstrate the improved awareness, understanding, and attitudes towards the energy saving by smart meters and IHDs

    Stability studies of ZnO and AlN thin film acoustic wave devices in acid and alkali harsh environments

    Get PDF
    Surface acoustic wave (SAW) devices based on piezoelectric thin-films such as ZnO and AlN are widely used in sensing, microfluidics and lab-on-a-chip applications. However, for many of these applications, the SAW devices will inevitably be used in acid or alkali harsh environments, which may cause their early failures. In this work, we investigated the behavior and degradation mechanisms of thin film based SAW devices in acid and alkali harsh environments. Results show that under the acid and alkali attacks, chemical reaction and corrosion of ZnO devices are very fast (usually within 45 s). During the corrosion, the crystalline orientation of the ZnO film is not changed, but its grain defects are significantly increased and the grain sizes are decreased. The velocity of ZnO-based SAW devices is decreased due to the formation of porous structures induced by the chemical reactions. Whereas an AlN thin-film based SAW device does not perform well in acid–alkali conditions, it might be able to maintain a normal performance without obvious degradation for more than ten hours in acid or alkali solutions. This work could provide guidance for the applications of both ZnO or AlN-based SAW devices in acid/alkali harsh environments

    iBILL: Using iBeacon and Inertial Sensors for Accurate Indoor Localization in Large Open Areas

    Get PDF
    As a key technology that is widely adopted in location-based services (LBS), indoor localization has received considerable attention in both research and industrial areas. Despite the huge efforts made for localization using smartphone inertial sensors, its performance is still unsatisfactory in large open areas, such as halls, supermarkets, and museums, due to accumulated errors arising from the uncertainty of users’ mobility and fluctuations of magnetic field. Regarding that, this paper presents iBILL, an indoor localization approach that jointly uses iBeacon and inertial sensors in large open areas. With users’ real-time locations estimated by inertial sensors through an improved particle filter, we revise the algorithm of augmented particle filter to cope with fluctuations of magnetic field. When users enter vicinity of iBeacon devices clusters, their locations are accurately determined based on received signal strength of iBeacon devices, and accumulated errors can, therefore, be corrected. Proposed by Apple Inc. for developing LBS market, iBeacon is a type of Bluetooth low energy, and we characterize both the advantages and limitations of localization when it is utilized. Moreover, with the help of iBeacon devices, we also provide solutions of two localization problems that have long remained tough due to the increasingly large computational overhead and arbitrarily placed smartphones. Through extensive experiments in the library on our campus, we demonstrate that iBILL exhibits 90% errors within 3.5 m in large open areas
    • …
    corecore